Funder	Project Title	Funding	Institution	
Autism Science Foundation	Investigation of postnatal drug intervention's potential in rescuing the symptoms of fragile X syndrome in adult mice	\$30,000	Massachusetts Institute of Technology	
Autism Speaks	The role of the autism-associated gene tuberous sclerosis complex 2 (TSC2) in presynaptic development	\$54,000	University of California, San Diego	
Autism Speaks	Molecular basis of autism associated with human adenylosuccinate lyase gene defects	\$30,000	University of Delaware	
Autism Speaks	Visual system connectivity in a high-risk model of autism	\$41,000	Children's Hospital Boston	
Autism Speaks	An adult brain-specific mouse model of neuronal TSC inactivation	\$60,000	Massachusetts General Hospital	
Autism Speaks	Neural circuit deficits in animal models of Rett syndrome	\$0	Cold Spring Harbor Laboratory	
Autism Speaks	Identification of UBE3A substrates using proteomic profiling in Drosophila	\$0	University of Tennessee Health Science Center	
Autism Speaks	Developmental versus acute mechanisms mediating altered excitatory synaptic function in the fragile X syndrome mouse model	\$0	University of Texas Southwestern Medical Center	
Department of Defense	The functional link between DISC1 and neuroligins: Two genetic factors in the etiology of autism	\$110,250	Children's Memorial Hospital, Chicago	
National Institutes of Health	Autism iPSCs for studying function and dysfunction in human neural development	\$317,520	Scripps Research Institute	
National Institutes of Health	The microRNA pathway in translational regulation of neuronal development	\$417,813	J. David Gladstone Institutes	
National Institutes of Health	Augmentation of the cholinergic system in fragile X syndrome: A double-blind placebo-controlled randomized study of donepezil	\$240,000	Stanford University	
National Institutes of Health	BDNF and the restoration of spine plasticity with autism spectrum disorders	\$571,019	University of California, Irvine	
National Institutes of Health	Elucidation of the developmental role of JAKMIP1, an autism-susceptibility gene	\$30,418	University of California, Los Angeles	
National Institutes of Health	High content screens of neuronal development for autism research	\$207,931	University of California, San Diego	
National Institutes of Health	Genetics and physiology of social anxiety in fragile X	\$160,398	University of California, Davis	
National Institutes of Health	Synaptic analysis of neuroligin 1 function	\$50,054	Stanford University	
National Institutes of Health	TrkB agonist(s), a potential therapy for autism spectrum disorders	\$269,500	University of California, Los Angeles	
National Institutes of Health	White matter connections of the face processing network in children and adults	\$41,176	Stanford University	
National Institutes of Health	Fundamental mechanisms of GPR56 activation and regulation	\$135,625	Emory University	
National Institutes of Health	Olfactory abnormalities in the modeling of Rett syndrome	\$358,750	Johns Hopkins University	
National Institutes of Health	Gene silencing in fragile X syndrome	\$312,908	National Institutes of Health (NIH)	
National Institutes of Health	Chromatin alterations in Rett syndrome	\$271,798	University of Massachusetts Medical School	
National Institutes of Health	Cell-based genomic analysis in mouse models of Rett syndrome	\$498,790	Cold Spring Harbor Laboratory	

Funder	Project Title	Funding	Institution
National Institutes of Health	Translation regulation in hippocampal LTP and LTD	\$375,817	New York University
National Institutes of Health	Role of neuroligins in long-term plasticity at excitatory and inhibitory synapses	\$57,194	Albert Einstein College of Medicine of Yeshiva University
National Institutes of Health	Cell type-based genomics of developmental plasticity in cortical GABA interneurons	\$252,000	Cold Spring Harbor Laboratory
National Institutes of Health	An investigation of neuropsychological endophenotypes in autism and fragile X	\$73,938	University of North Carolina at Chapel Hill
National Institutes of Health	Neuroligin regulation of central GABAergic synapses	\$78,000	Duke University
National Institutes of Health	Regulation of 22q11 genes in embryonic and adult forebrain	\$305,105	University of North Carolina at Chapel Hill
National Institutes of Health	A longitudinal MRI study of brain development in fragile X syndrome	\$622,099	University of North Carolina at Chapel Hill
National Institutes of Health	Sex differences in early brain development: Brain development in Turner syndrome	\$150,049	University of North Carolina at Chapel Hill
National Institutes of Health	Genetic and developmental analyses of fragile X syndrome	\$532,205	Vanderbilt University
National Institutes of Health	Proteomics in Drosophila to identify autism candidate substrates of UBE3A	\$319,550	University of Tennessee Health Science Center
National Institutes of Health	Proteomics in Drosophila to identify autism candidate substrates of UBE3A (supplement)	\$10,000	University of Tennessee Health Science Center
National Institutes of Health	Role of excitation and inhibition in Rett syndrome	\$32,922	Baylor College of Medicine
National Institutes of Health	Mouse models of the neuropathology of tuberous sclerosis complex	\$258,344	University of Texas Health Science Center at Houston
National Institutes of Health	Cortical circuit changes and mechanisms in a mouse model of fragile X syndrome	\$293,198	University of Texas Southwestern Medical Center
National Institutes of Health	Cortical circuit changes and mechanisms in a mouse model of fragile X syndrome (supplement)	\$47,848	University of Texas Southwestern Medical Center
National Institutes of Health	Elucidating the roles of SHANK3 and FXR in the autism interactome	\$403,492	Baylor College of Medicine
National Institutes of Health	Clinical correlations of contiguous gene syndromes	\$21,923	Baylor College of Medicine
National Institutes of Health	Face processing and brain function associated with autistic symptoms in fragile X	\$73,500	University of Wisconsin - Madison
Simons Foundation	Probing a monogenic form of autism from molecules to behavior	\$187,500	Stanford University
Simons Foundation	Connectopathic analysis of autism	\$78,150	Harvard University
Simons Foundation	Aberrant synaptic function caused by TSC mutation in autism	\$173,726	Columbia University
Simons Foundation	Cellular and molecular alterations in GABAergic inhibitor circuits by mutations in MeCP2	\$441,032	Cold Spring Harbor Laboratory
Simons Foundation	Coordinated control of synapse development by autism- linked genes	\$75,000	University of Texas Southwestern Medical Center

Funder	Project Title	Funding	Institution
Simons Foundation	Mouse models of human autism spectrum disorders: Gene targeting in specific brain regions	\$100,000	University of Texas Southwestern Medical Center